A Binary Level Set Model for Elliptic Inverse Problems with Discontinuous Coefficients

نویسندگان

  • LARS KRISTIAN NIELSEN
  • XUE - CHENG
  • SIGURD IVAR AANONSEN
  • MAGNE ESPEDAL
چکیده

In this paper we propose a variant of a binary level set approach for solving elliptic problems with piecewise constant coefficients. The inverse problem is solved by a variational augmented Lagrangian approach with a total variation regularisation. In the binary formulation, the seeked interfaces between the domains with different values of the coefficient are represented by discontinuities of the level set functions. The level set functions shall only take two discrete values, i.e. 1 and -1, but the minimisation functional is smooth. Our formulation can, under moderate amount of noise in the observations, recover rather complicated geometries without requiring any initial curves of the geometries, only a reasonable guess of the constant levels is needed. Numerical results show that our implementation of this formulation has a faster convergence than the traditional level set formulation used on the same problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients

We propose a level set approach for elliptic inverse problems with piecewise constant coefficients. The geometry of the discontinuity of the coefficient is represented implicitly by level set functions. The inverse problem is solved using a variational augmented Lagrangian formulation with total variation regularization of the coefficient. The corresponding Euler Lagrange equation gives the evo...

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

A piecewise constant level set method for elliptic inverse problems

We apply a piecewise constant level set method to elliptic inverse problems. The discontinuity of the coefficients is represented implicitly by a piecewise constant level set function, which allows to use one level set function to represent multiple phases. The inverse problem is solved using a variational penalization method with the total variation regularization of the coefficients. An opera...

متن کامل

Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization

We propose several formulations for recovering discontinuous coefficients in elliptic problems by using total variation (TV) regularization. The motivation for using TV is its wellestablished ability to recover sharp discontinuities. We employ an augmented Lagrangian variational formulation for solving the output-least-squares inverse problem. In addition to the basic outputleast-squares formul...

متن کامل

On a Level-Set Method for Ill-Posed Problems with Piecewise Nonconstant Coefficients

We investigate a level-set-type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem, we propose a Tikhonov-type regularization approach coupled with a level-set framework. We prove the existence of g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006